
React + Flux
Kristofer Palmvik

Swenug Linköping 2015-MAR-25

Kristofer Palmvik

–Allen Pike

“Studies show that a todo list is the
most complex JavaScript app you
can build before a newer, better

framework is invented.”

http://www.allenpike.com/2015/javascript-framework-fatigue/

Decrease coupling
Increase cohesion

Most frameworks separate
logic and presentation

How do we keep all views
synchronized and updated?

It worked in 1998!

Let’s render everything from scratch.
Every time!

That didn’t work :(

Because state will be lost and browser DOM manipulation is slow

“The Document Object Model (DOM) is a cross-
platform and language-independent convention
for representing and interacting with objects in

HTML, XHTML, and XML documents. The nodes
of every document are organized in a tree

structure, called the DOM tree. Objects in the
DOM tree may be addressed and manipulated

by using methods on the objects.”

– http://en.wikipedia.org/wiki/Document_Object_Model

JavaScript is fast.
Browser DOM manipulation is slow.

• Create a virtual DOM in JS
• Update virtual DOM on changes
• Compute minimum change set
• Batch execute the DOM

manipulation (in a clever way)

Well, that’s React

Virtual DOM ≠ Shadow DOM
!important

React =
Virtual DOM

+
Diff algorithm

+
React components (your code)

Idempotent function generating  
virtual DOM objects from current state

Reactive programming
Think: Excel

My first React Component
Code examples

Just add react.js (600kB) or react.min.js (120 kB)

Props and state
Used by render()

Prop(ertie)s

React.createElement(myComponent,
 { myValue: 'Special Value' });

Set by the owner, cannot be modified inside the component

State

User input + other events
Only modified by the component

Avoid state, or keep it as simple as possible!

JSX
A fancy way of writing HTML-ish code in JavaScript

React.render(
<HelloMessage name="John" />, mountNode);

React.render(
React.createElement(
HelloMessage, {name: "John"}), mountNode);

return (
 <div>
 <h3>TODO</h3>
 <TodoList items={this.state.items} />
 <form onSubmit={this.handleSubmit}>
 <input onChange={this.onChange} value={this.state.text} />
 <button>{'Add #' + (this.state.items.length + 1)}</button>
 </form>
 </div>
);

return (
 React.createElement("div", null,
 React.createElement("h3", null, "TODO"),
 React.createElement(TodoList, {items: this.state.items}),
 React.createElement("form", {onSubmit: this.handleSubmit},
 React.createElement("input", {onChange: this.onChange, value:
this.state.text}),
 React.createElement("button", null, 'Add #' + (this.state.items.length + 1))
)
)
);

Will it render?

Render when a component  
has changed its state

Use a similar strategy as Doom 3
But slightly less fun to play

Differences between two trees:
O(n3)

React is cheating to make it in O(n)

Assumptions
• Two components of the same class will

generate similar trees.
• Two components of different class will

generate different trees.
• Every element have unique ID (key) that is

stable between render() calls

Diff between two nodes
1. Different type or different components:

• throw away
2. DOM-node (like <div>):

• Pairwise match their properties in O(n)
3. Components of same type:

• Give props to the first and render
• Diff the resulting subtree.

Diff between two lists (naive)

List’
Array
Bytecode
Changelog

List
Bytecode
Changelog

Diff between two lists (with keys)

List’
<li key=”A”>Array
<li key=”B”>Bytecode
<li key=”C”>Changelog

List
<li key=”B”>Bytecode
<li key=”C”>Changelog

Batch execute the changes to
browser DOM

Read first, write later to avoid layout thrashing

– https://facebook.github.io/react/docs/reconciliation.html

“It is important to remember that the
reconciliation algorithm is an

implementation detail.”

– https://github.com/atom/atom/pull/5624

“React is an amazing abstraction, but very
few abstractions come without at least some
overhead. In the case of Atom’s text editor,

it’s worth the effort to avoid this overhead by
hand coding all DOM updates.”

Great things about React
• Everything is JavaScript

• Write code and test it as usual
• Everything is in the Virtual DOM

• Test without a browser/Selenium/PhantomJS…
• Server side rendering

• Everything is in one place
• Logic and presentation together in the component

• Everything is escaped
• XSS protection by default

Code example
// Todo: Write React Todo app

You can still use jQuery*
Use lifecycle hooks like componentDidMount()

* But you don’t want to

OK, so what is Flux?

– https://facebook.github.io/react/blog/2014/07/30/flux-actions-and-the-dispatcher.html

“Flux is more of a pattern than a full-
blown framework, and you can start

using it without a lot of new code
beyond React.”

– https://medium.com/@garychambers108/understanding-flux-f93e9f650af7

“Not a framework, but a set of guiding
principles for building scalable,

maintainable applications with React.”

– http://ryanclark.me/getting-started-with-flux

“Flux is, on simple terms, a glorified
pub/sub architecture.”

Flux helps you with the data flow
It is not a framework, the only thing you get is the Dispatcher

Replace MVC with Flux
And combine it with React if you like

It’s all about the data flow

It’s all about the data flow

Object created when something happens
in the application, like a click

It’s all about the data flow

Singleton

This is all you get!

Share the action with everyone

It’s all about the data flow

Notify interested viewsSimilar to a MVC model, but not really

Notified by dispatcher when an action arrives

Reactive state change

It’s all about the data flow

Controller-view or view

React component (usually)

Copy state from store

A little less conversation

Round and round…

Easy to reason about

• All change is initiated by an action
• All actions are going through the dispatcher
• All state in the store(s)

No loops, please!
The dispatcher is looking out for circular dependencies

Code example
So much todo, so little done.

My experience so far…
Don’t think you get it all

Where do we fetch data?

Where do you store data?
Less dependencies between stores. More controller-views.

How does it scale?
Easy to understand, fun, and great performance

How do we actually do it?
Facebook usually knows best…

Add-ons
…routing, css, canvas, animations, immutability, testing, functional programming…

Reflux
If you like Functional Reactive programming  

and want to avoid comparing strings

Reflux
// Creating action
var toggleGem = Reflux.createAction();

// Listening to action
var isGemActivated = false;

toggleGem.listen(function() {
 isGemActivated = !isGemActivated;
 var strActivated = isGemActivated ?
 'activated' :
 'deactivated';
 console.log('Gem is ' + strActivated);
});

Relay and GraphQL
Declare your data dependency and let magic handle the rest

React Native
Use native controls instead of a web browser

Learn once. Write anywhere.

TL;DL

Code examples
https://github.com/kpalmvik/react-flux-swenug

kristofer palmvik.

kpalmvik

kristofer.palmvik.se

@kpalmvik

kristofer@palmvik.se

